Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Mikrochim Acta ; 189(9): 321, 2022 08 06.
Article in English | MEDLINE | ID: covidwho-1982169

ABSTRACT

The label-free detection of SARS-CoV-2 spike protein is demonstrated by using slightly tapered no-core fiber (ST-NCF) functionalized with ACE2. In the fabricated sensor head, abrupt changes in the mode-field diameter at the interfaces between single-mode fiber and no-core fiber excite multi-guided modes and facilitate multi-mode interference (MMI). Its slightly tapered region causes the MMI to be more sensitive to the refractive index (RI) modulation of the surrounding medium. The transmission minimum of the MMI spectrum was selected as a sensor indicator. The sensor surface was functionalized with ACE2 bioreceptors through the pretreatment process. The ACE2-immobilized ST-NCF sensor head was exposed to the samples of SARS-CoV-2 spike protein with concentrations ranging from 1 to 104 ng/mL. With increasing sample concentration, we observed that the indicator dip moved towards a longer wavelength region. The observed spectral shifts are attributed to localized RI modulations at the sensor surface, which are induced by selective bioaffinity binding between ACE2 and SARS-CoV-2 spike protein. Also, we confirmed the capability of the sensor head as an effective and simple optical probe for detecting antigen protein samples by applying saliva solution used as a measurement buffer. Moreover, we compared its detection sensitivity to SARS-CoV-2 and MERS-CoV spike protein to examine its cross-reactivity. In particular, we proved the reproducibility of the bioassay protocol adopted here by employing the ST-NCF sensor head reconstructed with ACE2. Our ST-NCF transducer is expected to be beneficially utilized as a low-cost and portable biosensing platform for the rapid detection of SARS-CoV-2 spike protein.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2 , COVID-19/diagnosis , Humans , Reproducibility of Results , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Transducers
2.
Talanta ; 235: 122801, 2021 Dec 01.
Article in English | MEDLINE | ID: covidwho-1356464

ABSTRACT

With COVID-19 widespread worldwide, people are still struggling to develop faster and more accurate diagnostic methods. Here we demonstrated the label-free detection of SARS-CoV-2 spike protein by employing a SARS-CoV-2 spike antibody-conjugated phase-shifted long-period fiber grating (PS-LPFG) inscribed with a CO2 laser. At a specific cladding mode, the wavelength separation (λD) between the two split dips of a PS-LPFG varies with the external refractive index, although it is virtually insensitive to ambient temperature variations. To detect SARS-CoV-2 spike protein, SARS-CoV-2 spike antibodies were immobilized on the fiber surface of the fabricated PS-LPFG functionalized through chemical modification. When exposed to SARS-CoV-2 spike protein with different concentrations, the antibody-immobilized PS-LPFG exhibited the variation of λD according to the protein concentration, which was caused by bioaffinity binding-induced local changes in the refractive index at its surface. In particular, we also confirmed the potential of our sensor for clinical application by detecting SARS-CoV-2 spike protein in virus transport medium. Moreover, our sensor could distinguish SARS-CoV-2 spike protein from those of MERS-CoV and offer efficient properties such as reusability and storage stability. Hence, we have successfully fabricated a promising optical transducer for the detection of SARS-CoV-2 spike protein, which can be unperturbed by external temperature disturbances.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL